Finite-Time Blowup for a Complex Ginzburg-Landau Equation

نویسندگان

  • Thierry Cazenave
  • Flavio Dickstein
  • Fred B. Weissler
چکیده

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Finite-time blowup for a complex Ginzburg-Landau equation Thierry Cazenave, Flavio Dickstein, Fred B. Weissler

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Multibump, Blow-Up, Self-Similar Solutions of the Complex Ginzburg-Landau Equation

In this article we construct, both asymptotically and numerically, multi-bump, blowup, self-similar solutions to the complex Ginzburg-Landau equation in the limit of small dispersion. Through a careful asymptotic analysis, involving a balance of both algebraic and exponential terms, we determine the parameter range over which these solutions may exist. Most intriguingly, we determine a branch o...

متن کامل

Self-focusing in the Complex Ginzburg-landau Limit of the Critical Nonlinear Schrr Odinger Equation

We analyze self-focusing and singularity formation in the complex Ginzburg-Landau equation (CGL) in the regime where it is close to the critical nonlinear Schrr odinger equation. Using modulation theory Fibich and Papanicolaou, Phys. Lett. A 239:167{173, 1998], we derive a reduced system of ordinary diierential equations that describes self-focusing in CGL. Analysis of the reduced system shows ...

متن کامل

Boundary Effects in The Complex Ginzburg-Landau Equation

The effect of a finite geometry on the two-dimensional complex Ginzburg-Landau equation is addressed. Boundary effects induce the formation of novel states. For example target like-solutions appear as robust solutions under Dirichlet boundary conditions. Synchronization of plane waves emitted by boundaries, entrainment by corner emission, and anchoring of defects by shock lines are also reported.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2013